102 research outputs found

    All-sky Radio SETI

    Full text link
    Over the last decade, Aperture Arrays (AA) have successfully replaced parabolic dishes as the technology of choice at low radio frequencies - good examples are the MWA, LWA and LOFAR. Aperture Array based telescopes present several advantages, including sensitivity to the sky over a very wide field-of-view. As digital and data processing systems continue to advance, an all-sky capability is set to emerge, even at GHz frequencies. We argue that assuming SETI events are both rare and transitory in nature, an instrument with a large field-of-view, operating around the so-called water-hole (1-2 GHz), might offer several advantages over contemporary searches. Sir Arthur C. Clarke was the first to recognise the potential importance of an all-sky radio SETI capability, as presented in his book, Imperial Earth. As part of the global SKA (Square Kilometre Array) project, a Mid-Frequency Aperture Array (MFAA) prototype known as MANTIS (Mid- Frequency Aperture Array Transient and Intensity-Mapping System) is now being considered as a precursor for SKA-2. MANTIS can be seen as a first step towards an all-sky radio SETI capability at GHz frequencies. This development has the potential to transform the field of SETI research, in addition to several other scientific programmes.Comment: 7 pages, 4 figures, accepted for publication, Proceedings of Science, workshop on "MeerKAT Science: On the Pathway to the SKA", held in Stellenbosch 25-27 May 2016. Comments welcom

    Fast Radio Burst 121102 Pulse Detection and Periodicity: A Machine Learning Approach

    Get PDF
    We report the detection of 72 new pulses from the repeating fast radio burst FRB 121102 in Breakthrough Listen C-band (4-8 GHz) observations at the Green Bank Telescope. The new pulses were found with a convolutional neural network in data taken on August 26, 2017, where 21 bursts have been previously detected. Our technique combines neural network detection with dedispersion verification. For the current application we demonstrate its advantage over a traditional brute-force dedis- persion algorithm in terms of higher sensitivity, lower false positive rates, and faster computational speed. Together with the 21 previously reported pulses, this observa- tion marks the highest number of FRB 121102 pulses from a single observation, total- ing 93 pulses in five hours, including 45 pulses within the first 30 minutes. The number of data points reveal trends in pulse fluence, pulse detection rate, and pulse frequency structure. We introduce a new periodicity search technique, based on the Rayleigh test, to analyze the time of arrivals, with which we exclude with 99% confidence pe- riodicity in time of arrivals with periods larger than 5.1 times the model-dependent time-stamp uncertainty. In particular, we rule out constant periods >10 ms in the barycentric arrival times, though intrinsic periodicity in the time of emission remains plausible.Comment: 32 pages, 10 figure

    A 1.1 to 1.9 GHz SETI Survey of the Kepler Field: I. A Search for Narrow-band Emission from Select Targets

    Get PDF
    We present a targeted search for narrow-band (< 5 Hz) drifting sinusoidal radio emission from 86 stars in the Kepler field hosting confirmed or candidate exoplanets. Radio emission less than 5 Hz in spectral extent is currently known to only arise from artificial sources. The stars searched were chosen based on the properties of their putative exoplanets, including stars hosting candidates with 380 K > T_eq > 230 K, stars with 5 or more detected candidates or stars with a super-Earth (R_p 50 day orbit. Baseband voltage data across the entire band between 1.1 and 1.9 GHz were recorded at the Robert C. Byrd Green Bank Telescope between Feb--Apr 2011 and subsequently searched offline. No signals of extraterrestrial origin were found. We estimate that fewer than ~1% of transiting exoplanet systems host technological civilizations that are radio loud in narrow-band emission between 1-2 GHz at an equivalent isotropically radiated power (EIRP) of ~1.5 x 10^21 erg s^-1, approximately eight times the peak EIRP of the Arecibo Planetary Radar, and we limit the the number of 1-2 GHz narrow-band-radio-loud Kardashev type II civilizations in the Milky Way to be < 10^-6 M_solar^-1. Here we describe our observations, data reduction procedures and results.Comment: Accepted to the Astrophysical Journa
    • …
    corecore